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ABSTRACT

A study to improve the performance of was 1 million pounds (ref. 3). The Beta II
the NASA two-stage-to-orbit vehicle was configuration studied in this paper had four
undertaken. The NASA concept, a horizontal High Speed Civil Transport (HSCT) derived
takeoff and landing, fully reusable, two-stage to turbine engines on top and one conventional
orbit vehicle will be capable of launching and ramjet at the bottom per nacelle (see Figure 2).
returning a 10,000 pound payload to a 100 nmi JP fuel was used in both the main burner and the
polar orbit. The vehicle, Beta II, is a derivative afterburner of the HSCT engines and they
of the USAF/Boeing Beta vehicle which was operated from takeoff to Mach 3 or 3.5. The
designed to deliver a 50,000 pound payload to ramjet used hydrogen fuel and became
a similar orbit. Beta II stages at Math 6.5 and operational around Mach 1.0 and continued
about I00,000 feet altitude. The propulsion until separation occurred. Also, included in this
system for the booster is an over/under turbine configuration was a variable capture area inlet
engine/ramjet configuration. In this paper a for better inlet/engine airflow matching
study was performed for one of the candidate throughout the flight path.
engines, the variable cycle engine, to assess its
potential to meet the required performance The booster of the Beta II is fully
needs of the Beta II vehicle. Several options for airbreathing from takeoff to separation at Mach
thrust augmentation were studied in order to 6.5 and 100,000 feet altitude. After separation
improve the performance of the engine where the booster returned to its landing site. The
there was a critical need. The methodology, orbiter, similar to the Space Shuttle, was bottom
constraints, propulsion performance and mis- loaded within the booster. The orbiter was
sion study results are presented, propelled by one Space Shuttle Main Engine

(SSME). The orbiter propulsion systemoperated
INTRODUCTION from booster/orbiter separation to orbit.

This paper is the result of the NASA The options looked at in this study
Lewis Research Center's (LeRC) on-going study included turbine engine aerodynamic
of propulsion systems for low risk replacements overspeeding and water injection in the
for the Space Shuttle. The purpose of this transonic region as well as water injection at
present study was to predict the improved high speed to enhance the engine performance.
vehicle performance due to the enhancements The results of these studies are outlined below.
made to the booster propulsion system.

ENGINE DESCRIPTIONS
The vehicle used for this study, Beta II,

is a Two-Stage-To-Orbit (TSTO) vehicle derived The engine chosen for this study was
from the USAF/Boeing Beta vehicle (ref. 1 & the Variable Cycle Engine (VCE) (ref. 4). The
2). Beta II, a horizontal takeoff and landing VCE is a very complex cycle but offers a lot of
vehicle, was downsized from the original Beta to flexibility for alternative missions. The VCE is
deliver 10,000 pounds to a 100 nmi polar orbit, a derivative cycle of a conventional two-spool
The vehicle configuration is shown in Figure 1. turbofan with SOMenotable features. The VCE
Beta II was designed to be fully reusable, using has two bypass ducts instead of one. The first
low risk and near term technology. The total bypass duet (outer duct) acts as a valve that can
takeoff weight of Beta H (booster and orbiter) be controlled to maximize thrust (figure 3). At



takeoff the outer bypass is closed (turbofan METHOD OF ANALYSIS
configuration) and at high Mach number the
outer bypass duct is opened allowing higher Several codes were used in performing
engine airflow and increasing thrust. The the Beta II vehicle propulsion analysis. The
second bypass (inner duct) is positioned after the NASA Engine Performance Program (NEPP)
Core-Driven-Fan (CDF) rather than behind the (ref. 6), was used to carryout the turbine engine
front fan as it is done for a conventional performance analysis. NEPP performs a one-
turbofan. The placement of the inner duct dimensional, steady-state thermodynamic
behind the CDF helps maintain an almost analysis and includes chemical equilibrium
constant bypass ratio in it throughout the engine effects. The fan, compressor and turbine
flight regime because the front fan is allowed to aerodynamics maps used are similar in
pass only as much airflow as the CDF can technology and performance to those being used
handle. The VCE was designed for a Mach in current High Speed Research Studies.
number of 2.4 and 60,000 feet altitude. The
Overall Pressure Ratio (OPR) was 21.3 at Sea The ramjet performance was calculated
Level Static (SLS) condition and a corrected using RAMSCRAM (ref. 7). RAMSCRAM is a
airflow of 790 lb/s. The inner bypass ratio was one-dimensional, steady-state code which
held at 0.3 (ref. 4); the outer bypass ratio was includes chemical equilibrium effects for a
negligible at sea level but increased up to 0.53 at ramjet or scramjet duct. A constant area burner
the turbomachinery shut down point, was assumed. The program determines the loss

in momentum due to the heat release in the
ENGINE CONSTRAINTS & OPERATION combustor.

Since only four turbine engines The performance data used for the
designed for 610 lb/s. corrected airflow at sea nozzle was from previous Beta II studies using
level static condition could fit inside each SEAGULL (ref. 8). SEAGULL is a steady-state,
nacelle, all performance data was ratioed to 610 inviscid, two-dimensional performance code
Ibis. corrected airflow at SLS for the turbine which uses a finite difference method. The inlet

engine. The engine was limited to a maximum performance data was obtained using the Inlet
burner temperature of 3560 R and a maximum Performance Analysis Code (IPAC) (ref. 9).
compressor exit temperature of 1810 R. IPAC makes use of the oblique shock and

Prandtl-Meyer expansion theory for the
The turbine engine was fully prediction of inlet performance. The inlet

afterburned throughout the flight path to performance data used for this study is given in
maximize thrust. A common inlet was used for (ref. 2 & 9). Since the performance data
both turbine and ramjet engines. During turbine generated for the turbine engine was uninstalled
engine operation, airflow not required for the data, the INSTALL (ref. 10) code was used to
VCE was used for the ramjet, take into account the installation effects of the

propulsion system. The INSTALL code was
RAMJET designed to calculate net installed propulsion

performance at various flight conditions based
The ramjet sizing was done in a on uninstalled engine data, inlet and nozzle

previous study (ref. 5) to determine the Math data.
number and altitude limits for the Beta II

vehicle. A maximum burner cross-sectional The mission analysis was performed
area of 111.3 square feet was used. The ramjet using the Optimal Trajectories by Implicit
was hydrogen fueled and the fuel-to-air ratio Simulationprogram (OTIS)(ref. 11). OTIS was
was chosen to maximize thrust. The maximum used to find optimal trajectories while satisfying
fuel-to-air ratio was 0.95 of the stoichiometric maximum dYnamic pressure, staging roach
value because 5% of the ramjet airflow was used number and engine operating points constraints.
for ramjetcooling. OTIS simulates and optimizes point mass

trajectories with provisions made for free and
fixed end constraints, specified way points and
path constraints.
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DISCUSSION AND RESULTS overspeeding increases airflow by 1 percent
while 10 percent overspeeding increases it by 3

For this study three options were percent. The bypass ratio for the outer duct
assessed as a means to increase the overall decreases at the low transonic Math number to

performance of the Beta II vehicle: (1) allow more airflow through the core, but
Overspeeding the turbine engine in the transonic increases at the higher transonic Mach number
region in order to alleviate the transonic thrust (fig. 7 ). Since both the 7 and 10 percent
pinch; (2) Water injection in the transonic overspeed cases were run at the same maximum
region at different locations in the turbine level of afterburner (same exit fuel-to-air-ratio),
engine for the same purpose mentioned above; the higher airflow of the 10 percent overspeed
(3) Water injection at the engine face in order to case yields a higher increase in thrust at no
extend the Mach number range of the additional cost in specific fuel consumption.
turbomachinery from Mach number 2.4 up to The fan pressure ratio for 10 percent overspeed
Mach number 3.5. Uninstalled performance for was 7 percent lower than that with 7 percent
the turbine engine using these options will be overspeeding. That is why the airflow for the
presented and discussed followed by the mission 10 percent overspeeding is about 2 percent
analysis. Uninstalled thrust was corrected for higher than the 7 percent overspeed case.
altitude effects along the flight trajectory using
the ratio of engine face total pressure to standard As the Mach number and fan entrance
pressure and is presented per propulsion module temperature increases for both the 7 and 10
which consists of four VCE engines. For the percent overspeed cases, the turbine engine
configurations where water injection was reduces the fan pressure ratio, to reduce fan
investigated, turbine engine specific fuel power requirements. As a result, the increase in
consumption represents total propellant used, thrust with airflow is lower at the higher
i.e, both JP fuel and water. Similarly, corrected transonic Mach number.
airflow consists of both air and water.

WATER INJECTION: TRANSONIC
OVERSPEED: TRANSONIC

Water injection was studied to
Aerodynamic overspeeding of the VCE determine its thrust enhancement potential in

fan in the transonic region was studied to assess the transonic region to help alleviate the thrust
its thrust augmentation capability because the pinch for the Beta 1I vehicle. Water injection
performance of the Beta II vehicle in the was done for the VCE at the fan and the high
transonic region is very marginal. Aerodynamic pressure compressor (HPC) faces as well as in
overspeeding is done sometimes for short the main burner and the afterburner. The
periods to improve engines performance when amount of water injected at the fan and the HPC
it is necessary. The penalty is a weight increase faces was limited by the vapor saturation limit.
of the rotating component since it has to be Any additional water added past that limit
designed to withstand the added stress would have caused a decrease in compressor
associated with the overspeeding, if not, the blades performance due to the water droplets
engine life will be reduced. Since the Beta 11 impinging on the blades. Water consumption
booster is an acceleration vehicle with short duty was the limiting factor (at the point where the
cycles, overspeeding would not have any specific fuel consumption became unrealistic)
significant impact on the vehicle in terms of for the main burner and the afterburner.
weight increase. Therefore, aerodynamic Therefore, a limit of 8.5 percent ratio of water to
overspeeding of 7 and 10percent of the fan were airflow was chosen for the main burner and the
investigated to improve Beta II performance in afterburner cases for this study. As seen in
the transonic region, figure 8, water injection, in terms of thrust

augmentation, improves the engine performance
Figures 4 and 5 show that overspeeding in the transonic region substantially. Water

the fan transonically increases the thrust up to 4 injection in the fan shows the best gain in
percent with almost no change, except at the thrust compared to the other cases investigated.
higher transonic Mach numbers, in specific fuel The difference in thrust increase for water
consumption. As shown in figure 6, 7 percent injection in the HPC, the main burner and the



afterburner was not significant. However, when of water injection in the main burner, the same
compared with the baseline case, the increase in total airflow was maintained by increasing the
thrust for these three cases was substantial, bypassratio. Since a variable throat area nozzle

was assumed, water injection in the afterburner
Because the increase in thrust tells only had no effect on airflow or bypass ratio.

half of the story, it must be emphasized that the
amount of water injected to obtain a certain level WATER INJECTION: HIGH SPEED
of thrust augmentation must be considered.
Both main and afterburner results were obtained Water injection was also used at the
with 8.5 percent of water injection whereas the engine face as a way to maintain the Mach 2.4
fan and the HPC were not able to sustain that (design Mach number) engine entrance
much. Even less water was injected in the HPC temperature constraint past Math 2.4 up to
compared to the amount injected in the fan Mach 3.5. Since the VCE engine had to spool
because convergence for the HPC was very down above Mach 2.1 to remain within the
sensitive to the amount of water injected. The compressor exit temperature constraint of 1810
amount of water injection possible for the HPC R, water injection at the fan seemed to be a
with cycle convergence ranged from 0.1 percent viable option compared to using more
at Mach 0.9 to 0.6 percent at Mach 1.5 while for expensive, exotic materials capable of
the fan it ranged from 0 percent water at Mach withstanding the high temperatures.
0.9 to 2.3 percent at Mach 1.3. Thus, when the
thrust increase was compared with the amount Figure 12 shows that the addition of
of water added, it could well be argued that the water allows the airflow to be kept much higher
best place for the water injection, in the than the baseline case, thus, increasing the
transonic region, is at the HPC face since the corrected thrust significantly in the high Mach
specific fuel consumption for the HPC was lower number region. Water injection was turned on at
than the other cases. This is clearly shown in Math 2.5 at which point the amount required to
figure 9. simulate the design point conditions for the

VCE was minimal (0.7 percent). Thus, there
The trend for the fuel consumption for was no significant gain in terms of thrust at

the main and afterburner was as expected; water Mach 2.5, but past that point _hrust increases
injection in the main burner increased specific significantly as the amount of water injected
fuel consumption (SFC) by a factor of 1.5 over increases (fig. 13). However, the increase in
the baseline case and by a factor of 2 for the thrust was not free. Figure 14 shows a
afterburner case. The only exception occurred at considerable increase in !specific fuel
Math 1.5 where cycle convergence limited the consumption compared to the baseline case.
amount of water injected into the afterburner to
0.7 percent. That explains why the SFC at that As can be seen from figure 15, water
Math number is almost equal the baseline case injection at high Math number affects the
(fig. 9). variable bypass ratio. That is because the engine

did not have to spool down since the engine
Except for theburner case (fig. 10), the entrance temperature was kept at Mach 2.4

variablebypass was not much affected by the conditions. Thus, the amount of bypass airflow
water injection in the transonic region because stayed constant. Figure 16 shows that modest
not much water was added at the fan or at the amount of water would be required to keep the
compressor face to make a significant engine entrance temperatures within the Mach
difference. Because the turbine was choked, the 2.4 design limit if the turbomachinery operation
cycle had to bypass some airflow to account for had to be extended up to Math 3.5. The water
the water being injected in the main burner, decreases engine entrance temperature which
Figure 11 shows that the corrected airflow helps keep corrected airflow up. However, as
curves remained almost unaffected by the water stated earlier, there is a significant increase in
injection. When water was injected at the fan or specific fuel consumption by the time Math 3.5
compressor face, only a small amount of water is reached (fig. 14).
could be added due to the low engine entrance
temperature in the transonic region. In the case
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MISSION ANALYSIS The vehicle relative staging weight,
Ws, for the VCE engine was obtained by

Several missions were run using the subtracting the vehicle staging weight for the
same vehicle but different VCE engine baseline case from the staging weight of each
configurations. The vehicle take-off gross configuration studied. Thus, from figure 17, any
weight was kept constant at 1 million pounds configuration on the upper part of the graph
while running the different configurations. The indicates an improvement over the baseline case
following VCE configurations were since it represents an increase in staging weight
investigated: (1) 7 and 10 percent overspeed in for that particular configuration. The increase
the transonic region; (2) Water injection in the in staging weight over the baseline indicates that
transonic region at the fan and the compressor less propellant is used for that configuration to
faces as well as in the main burner and the reach the staging Mach number from takeoff.
afterburner; (3) Water injection at the fan face Conversely, any configuration on the lower part
to maintain a Mach 2.4 engine entrance indicates thereversetrend.
temperature constraint up to Mach number 3 or
3.5; (4) Extending the turbine engine operation Figure 17 shows that overspeeding the
up to Mach 3 or 3.5 without using water. VCE by 10 percent in the transonic region

increased the vehicle staging weight by 0.11
For the cases where turbofan operation percent. Water injection at the High Pressure

was extended to Mach 3 and 3.5 without water Compressor (HPC) face increased the vehicle
injection, the compressor exit temperature limit staging weight by 0.73 percent followed by
(1810 R) was maintained, but the fan entrance water injection at the fan face in the transonic
temperature limit was exceeded. Such operation region. On the other hand, overspeeding the
would require substituting higher temperature VCE by 7 percent decreased the vehicle staging
materials in the fan.. weight slightly compared to the baseline case.

This is due to an increase in specific fuel
When the turbomachinery operation consumption at the high Mach number in the

was extended past Mach 2.4, the overall transonic region. Water injection in the main
performance of the propulsion system (both burner decreased the staging weight by 1.7
turbine engines and ramjet)decreased. That percent followed by the afterburner with a
was even more so for the cases where water decrease of 1.36 percent. Water injection at the
injection was used to prevent the turbine engine engine face to extend the Mach number up to
from spooling down. That is because at the high 3.5 decreased the staging weight as well. For
speed, the turbine engine is taking away needed the case where water was not used while
airflow from the ramjet (Math 2.4-3.5). Since extending the Mach number up to 3.5, the
less airflow was available to the ramjet, the staging weight decreased but to a lesser degree
overall performance in terms of total thrust for than that of the water injection case.
the vehicle was down. The same trend was
observed but to a lesser degree for the cases For the cases of water injection and
where the extension of the Mach number was overspeeding in the transonic region significant
investigated with no water added at the fan face change occurred in the flight path of the VCE
to maintain the engine entrance temperature when compared with the baseline. The
condition (Math 2.4). The reason is because, overspeed cases executed the transonic dive at a
without water injection, the turbine engine slightly higher altitude (fig. 18). Water
spooled down significantly as Math number injection in the HPC pushed the vehicle flight
increased past the design point in order to path in the transonic region significantly higher
maintain the high pressure compressor exit than the baseline (fig. 19). For the fan, the same
temperature constraint (even though the fan trend was observed but the change in altitude
entrance temperature was exceeded). As a was to a lesser de_ee than that of the HPC.
result, more airflow was available to the ramjet. From an environmental point of view (in the
Therefore, overall propulsion performance was case of flying over land) it would be preferable
better than the cases with water injection, to have the sonic boom at a much higher altitude

than the baseline case. Both the main burner
and the afterburner cases started the transonic



dive at approximately the same altitude that the Water injection at the HPC face in the
baseline did but bottomed out at a slightly transonic region resulted in the best
higher altitude, performance gain (minimum propellant usage

for the mission) compared to the other thrust
The injection of water at the engine augmentation options studied. However, the

face to keep the design 2.4 conditions, but gain was small and may be offset by the
operating the turbomachinery up to Mach 3.5, additional water injection hardware needed.
did not change the VCE flight path at the high Therefore, the use of water injection in the
Mach number (fig. 20). The reason was due to transonic region or at high speed for thrust
the fact that the OTIS mission code was run enhancement may cost more in SFC than the net
with a dynamic pressure constraint and was gain in thrust for the type of vehicle
optimized to minimize mission fuel configuration investigated in this study.
consumption. However, the increase in airflow and thrust

augmentation obtained from the options studied
SUMMARY may prove very effective in extending the

turbine Mach number range for a propulsion
This study addressed the issue of systemwithoutaramjet.
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